Math 246B Lecture 22 Notes

Daniel Raban

March 6, 2019

1 Picard's Little Theorem and Schottky's Theorem

1.1 Picard's little theorem

Last time, we proved Bloch's theorem:

Theorem 1.1 (A. Bloch). There exists an absolute constant $\ell > 0$ such that if $f \in$ Hol(|z| < 1) and f'(0) = 1, then the range of f(D) contains an open disc of radius ℓ .

We can now prove prove Picard's little theorem.¹

Theorem 1.2 (Picard's little theorem). Let $f \in Hol(\mathbb{C})$ be entire and nonconstant. Then the range $f(\mathbb{C})$ omits at most 1 point of \mathbb{C} .

Proof. Let $f \in Hol(\mathbb{C})$, and assume that f omits 2 distinct values $a, b \in \mathbb{C}$. By composing with an affine transformation, we may assume that a = 0, b = 1. We will show that f is constant.

We claim that there exists $g \in \operatorname{Hol}(\mathbb{C})$ such that $f(z) = -\exp(i\pi \cosh(2g(z)))$. The function $f \neq 0$ in \mathbb{C} , so there exists $F \in \operatorname{Hol}(\mathbb{C})$ such that $e^{2\pi i F} = f$. Moreover, F does not assume integer values, so we can define $\sqrt{F} - \sqrt{F-1} \in \operatorname{Hol}(\mathbb{C})$ which is also nonvanishing. Define g as a holomorphic branch of $\log(\sqrt{F} - \sqrt{F-1})$. Then

$$e^{g} = \sqrt{F} - \sqrt{F-1},$$
$$e^{-g} = \sqrt{F} + \sqrt{F-1}$$

 \mathbf{SO}

$$\cosh(2g) + 1 = 2\cos^2(g) = 2F,$$

which proves the claim.

Let

$$E = \{\pm \underbrace{\log(\sqrt{n} + \sqrt{n-1})}_{=\lambda_n} + im\pi/2 : m \in \mathbb{Z}, n \ge 1\}.$$

¹This proof is not Picard's original proof. Bloch's theorem came after the original proof.

The points in E form the vertices of a grid of rectangles in \mathbb{C} . We claim that $E \cap g(\mathbb{C}) = \emptyset$. If $g(z) = \pm \log(\sqrt{n} + \sqrt{n-1}) + im\pi/2$, then

$$2\cosh(2g(z)) = e^{im\pi} \left((\sqrt{n} + \sqrt{n-1})^2 + (\sqrt{n} - \sqrt{n-1})^2 \right)^2$$

= (-1)^m2(2n-1),

so f(z) = 1.

We now claim that g is constant. We have that the height of a rectangle R_n in our grid is $\pi/2$, and the width of R_n is $\lambda_{n+1} - \lambda_n = \log\left(\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n}+\sqrt{n-1}}\right) \leq C$ for $n \geq 1$. So there exists some $R_0 > 0$ such that each open disc of radius R_0 meets E. If $g'(a) \neq 0$ for some a, then apply Bloch's theorem to the function g(a + Rz)/Rg'(a) for |z| < 1, R > 0. The range contains a disc of fixed radius $\ell > 0$ for each R > 0, so $g(\mathbb{C})$ contains a disc of radius $R\ell|g'(a)| \leq R_0$; letting $R \to \infty$, we get a contradiction. \Box

1.2 Schottky's theorem

Here is a consequence of Bloch's theorem. It will allow us to prove Picard's great theorem.

Theorem 1.3 (Schottky). For each $0 < \alpha < \infty$ and $0 \leq \beta \leq 1$, there exists a constant $M(\alpha, \beta) > 0$ such that if $f \in Hol(D)$ omits the values 0, 1 and $|f(0)| \leq \alpha$, then $|f(z)| \leq M(\alpha, \beta)$ for all $|z| \leq \beta$.

Proof. We may assume $\alpha \geq 2$. Assume that $1/2 \leq |f(0)| \leq \alpha$. Following the proof of Picard's little theorem, let $F \in \operatorname{Hol}(D)$ be such that $e^{2\pi i F} = f$ in D. Chose the branch of f so that $\operatorname{Re}(F(0)) \in [0,1]$. Then $e^{-2\pi \operatorname{Im}(F(0))} = |f(0)|$, so $|\operatorname{Im}(F(0))| \leq (1/2\pi) \log(\alpha)$. We will call $C(\alpha)$ any constant that depends only on α . So $|F(0)| \leq C(\alpha)$. Next, $\sqrt{F} - \sqrt{F-1} \in \operatorname{Hol}(D)$, and $|\sqrt{F(0)} - \sqrt{F(0)-1}| \leq |F(0)|^{1/2} + (|F(0)|+1)^{1/2} \leq C(\alpha)$. Finally, let $g \in \operatorname{Hol}(D)$ be such that $e^g = \sqrt{F} - \sqrt{F-1}$. Choose the branch so that $0 \leq \operatorname{Im}(g(0)) < 2\pi$. We can then control $|\operatorname{Re}(g(0))|$. We get a constant $C(\alpha) > 0$ such that if $f(z) = \exp(i\pi \cosh(2g(z)))$, then $|g(0)| \leq C(\alpha)$ if $1/2 \leq |f(0)| \leq \alpha$.

Recall that $g(D) \cap E = \emptyset$, where E is as in the proof of Picard's little theorem. Then there is a number R_0 such that g(D) contains no disc. Let $|z| \leq \beta < 1$, and let

$$\varphi(\zeta) = \frac{g(z + (1 - \beta)\zeta)}{(1 - \beta)g'(z)}$$

where z is such that $g'(z) \neq 0$. This is holomorphic in $|\zeta| < 1$, and $\varphi'(0) = 1$, so $\varphi(D)$ contains a disc of radius ℓ by Bloch's theorem. So g(D) contains a disc of radius $|ell(1 - \beta)|g'(z)|$. So $|g'(z)| \leq R_0/(\ell(1 - \beta))$ for $|z| \leq \beta$. By integration, we get uniform control on the function g.

We will finish the proof next time.