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1 Picard’s Little Theorem and Schottky’s Theorem

1.1 Picard’s little theorem

Last time, we proved Bloch’s theorem:

Theorem 1.1 (A. Bloch). There exists an absolute constant ` > 0 such that if f ∈
Hol(|z| < 1) and f ′(0) = 1, then the range of f(D) contains an open disc of radius `.

We can now prove prove Picard’s little theorem.1

Theorem 1.2 (Picard’s little theorem). Let f ∈ Hol(C) be entire and nonconstant. Then
the range f(C) omits at most 1 point of C.

Proof. Let f ∈ Hol(C), and assume that f omits 2 distinct values a, b ∈ C. By composing
with an affine transformation, we may assume that a = 0, b = 1. We will show that f is
constant.

We claim that there exists g ∈ Hol(C) such that f(z) = − exp(iπ cosh(2g(z))). The
function f 6= 0 in C, so there exists F ∈ Hol(C) such that e2πiF = f . Moreover, F does not
assume integer values, so we can define

√
F −
√
F − 1 ∈ Hol(C) which is also nonvanishing.

Define g as a holomorphic branch of log(
√
F −

√
F − 1). Then

eg =
√
F −

√
F − 1,

e−g =
√
F +

√
F − 1

so
cosh(2g) + 1 = 2 cos2(g) = 2F,

which proves the claim.
Let

E = {± log(
√
n+
√
n− 1)︸ ︷︷ ︸

=λn

+imπ/2 : m ∈ Z, n ≥ 1}.

1This proof is not Picard’s original proof. Bloch’s theorem came after the original proof.
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The points in E form the vertices of a grid of rectangles in C. We claim that E∩g(C) = ∅.
If g(z) = ± log(

√
n+
√
n− 1) + imπ/2, then

2 cosh(2g(z)) = eimπ
(
(
√
n+
√
n− 1)2 + (

√
n−
√
n− 1)2

)2
= (−1)m2(2n− 1),

so f(z) = 1.
We now claim that g is constant. We have that the height of a rectangle Rn in our

grid is π/2, and the width of Rn is λn+1 − λn = log
(√

n+1+
√
n√

n+
√
n−1

)
≤ C for n ≥ 1. So there

exists some R0 > 0 such that each open disc of radius R0 meets E. If g′(a) 6= 0 for some
a, then apply Bloch’s theorem to the function g(a + Rz)/Rg′(a) for |z| < 1, R > 0. The
range contains a disc of fixed radius ` > 0 for each R > 0, so g(C) contains a disc of radius
R`|g′(a)|. But g(C)∩E = ∅, so R`|g′(a)| ≤ R0; letting R→∞, we get a contradiction.

1.2 Schottky’s theorem

Here is a consequence of Bloch’s theorem. It will allow us to prove Picard’s great theorem.

Theorem 1.3 (Schottky). For each 0 < α < ∞ and 0 ≤ β ≤ 1, there exists a constant
M(α, β) > 0 such that if f ∈ Hol(D) omits the values 0, 1 and |f(0)| ≤ α, then |f(z)| ≤
M(α, β) for all |z| ≤ β.

Proof. We may assume α ≥ 2. Assume that 1/2 ≤ |f(0)| ≤ α. Following the proof of
Picard’s little theorem, let F ∈ Hol(D) be such that e2πiF = f in D. Chose the branch
of f so that Re(F (0)) ∈ [0, 1]. Then e−2π Im(F (0)) = |f(0)|, so | Im(F (0))| ≤ (1/2π) log(α).
We will call C(α) any constant that depends only on α. So |F (0)| ≤ C(α). Next,

√
F −√

F − 1 ∈ Hol(D), and |
√
F (0)−

√
F (0)− 1| ≤ |F (0)|1/2+(|F (0)|+1)1/2 ≤ C(α). Finally,

let g ∈ Hol(D) be such that eg =
√
F −
√
F − 1. Choose the branch so that 0 ≤ Im(g(0)) <

2π. We can then control |Re(g(0))|. We get a constant C(α) > 0 such that if f(z) =
exp(iπ cosh(2g(z))), then |g(0)| ≤ C(α) if 1/2 ≤ |f(0)| ≤ α.

Recall that g(D) ∩ E = ∅, where E is as in the proof of Picard’s little theorem. Then
there is a number R0 such that g(D) contains no disc. Let |z| ≤ β < 1, and let

ϕ(ζ) =
g(z + (1− β)ζ)

(1− β)g′(z)

where z is such that g′(z) 6= 0. This is holomorphic in |ζ| < 1, and ϕ′(0) = 1, so ϕ(D)
contains a disc of radius ` by Bloch’s theorem. So g(D) contains a disc of radius |ell(1 −
β)|g′(z)|. So |g′(z)| ≤ R0/(`(1− β)) for |z| ≤ β. By integration, we get uniform control on
the function g.

We will finish the proof next time.
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