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1 Picard’s Little Theorem and Schottky’s Theorem

1.1 Picard’s little theorem
Last time, we proved Bloch’s theorem:

Theorem 1.1 (A. Bloch). There exists an absolute constant ¢ > 0 such that if f €
Hol(|z| < 1) and f'(0) = 1, then the range of f(D) contains an open disc of radius £.

We can now prove prove Picard’s little theorem.!

Theorem 1.2 (Picard’s little theorem). Let f € Hol(C) be entire and nonconstant. Then
the range f(C) omits at most 1 point of C.

Proof. Let f € Hol(C), and assume that f omits 2 distinct values a,b € C. By composing
with an affine transformation, we may assume that a = 0, b = 1. We will show that f is
constant.

We claim that there exists g € Hol(C) such that f(z) = —exp(imcosh(2¢g(z))). The
function f # 0 in C, so there exists F' € Hol(C) such that e>™¥" = f. Moreover, F does not
assume integer values, so we can define v/F —+/F — 1 € Hol(C) which is also nonvanishing.
Define ¢ as a holomorphic branch of log(v/F — v/F —1). Then

ed =VF —F -1,
e 9=VF+VF-1

SO

cosh(2g) + 1 = 2cos?(g) = 2F,

which proves the claim.
Let
E ={&log(v/n++vVn—1)+imr/2:m € Z,n > 1}.

=A\n

' This proof is not Picard’s original proof. Bloch’s theorem came after the original proof.



The points in E form the vertices of a grid of rectangles in C. We claim that ENg(C) = @.

If g(z) = £log(yv/n + vn — 1) +imn /2, then

e (Vi + Vi = 1) + (Vi — vV = 1)?)°
— (~1)"2(2n - 1),

2 cosh(2¢g(z))

so f(z) =1.

We now claim that g is constant. We have that the height of a rectangle R, in our

grid is 7/2, and the width of Ry, is Anr1 — An = log (%Zi%@) < C forn > 1. So there

exists some Ry > 0 such that each open disc of radius Ry meets E. If ¢'(a) # 0 for some
a, then apply Bloch’s theorem to the function g(a + Rz)/Rg’(a) for |z| < 1, R > 0. The
range contains a disc of fixed radius ¢ > 0 for each R > 0, so g(C) contains a disc of radius
Rl|g'(a)|. But g(C)NE = &, so Rl|¢'(a)| < Ro; letting R — oo, we get a contradiction. [

1.2 Schottky’s theorem

Here is a consequence of Bloch’s theorem. It will allow us to prove Picard’s great theorem.

Theorem 1.3 (Schottky). For each 0 < o < o0 and 0 < 8 < 1, there exists a constant
M(a, 8) > 0 such that if f € Hol(D) omits the values 0,1 and |f(0)| < a, then |f(z)| <
M, B) for all |z] < B.

Proof. We may assume o > 2. Assume that 1/2 < |f(0)] < a. Following the proof of
Picard’s little theorem, let ' € Hol(D) be such that e = f in D. Chose the branch
of f so that Re(F(0)) € [0,1]. Then e~ 27 (F©) = |£(0)], so | Im(F(0))| < (1/27)log(a).
We will call C(a) any constant that depends only on a. So |F(0)] < C(a). Next, vVF —
VF —1 € Hol(D), and |\/F(0)—/F(0) — 1| < [F(0)|'/2 4 (]F(0)|+1)"/? < C(a). Finally,
let g € Hol(D) be such that e9 = v/F —/F — 1. Choose the branch so that 0 < Im(g(0)) <
2. We can then control |Re(g(0))|. We get a constant C(a) > 0 such that if f(z) =
exp(im cosh(2g(z))), then [g(0)] < C(«) if 1/2 < |f(0)] < a.

Recall that g(D) N E = @, where E is as in the proof of Picard’s little theorem. Then
there is a number Ry such that g(D) contains no disc. Let |z| < 8 < 1, and let

9(z+ (1 -5)Q)
(1-08)g'(2)

where z is such that ¢/(z) # 0. This is holomorphic in |{| < 1, and ¢'(0) = 1, so ¢(D)
contains a disc of radius ¢ by Bloch’s theorem. So g(D) contains a disc of radius |ell(1 —
B)g’ (2)|. So |¢'(z)| < Ro/(£(1—)) for |z| < 3. By integration, we get uniform control on
the function g. O

©(C) =

We will finish the proof next time.
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